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Abstract. Confidentiality of information should be preserved despite
the emergence of data outsourcing. An existing approach is supposed
to achieve confidentiality by vertical fragmentation and without relying
on encryption. Although prohibiting unauthorised (direct) accesses to
confidential information, this approach has so far ignored the fact that
attackers might infer sensitive information logically by deduction. In this
article vertical fragmentation is modelled within the framework of Con-
trolled Query Evaluation (CQE) allowing for inference-proof answering
of queries. Within this modelling the inference-proofness of fragmenta-
tion is proved formally, even if an attacker has some a priori knowledge
in terms of a rather general class of semantic database constraints.
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1 Introduction

In these days information has become one of the most important resources, which
has to be protected. In order to protect information from undesired disclosures,
confidentiality requirements are declared by setting up a confidentiality policy.
According to such a confidentiality policy a system should enforce the declared
confidentiality requirements autonomously as for example surveyed in [3].

Moreover, there is an increasing need for storing data cost-efficiently in our
economy-driven society. One approach to achieve this goal is called “database
as a service” paradigm and leads to third party service providers specialized
on hosting database systems and offering the use of these database systems to
their customers via Internet in return for payment of rent [12]. These customers
may save money because they are freed from purchasing expensive hard- and
software and dealing with difficult administrative and maintenance tasks such
as upgrading hard- and software or eliminating technical malfunctions.
? This work has been partially supported by the DFG (SFB 876/A5), and a postdoc-
toral research grant of the German Academic Exchange Service (DAAD).
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Patient SSN Name DoB ZIP Illness Doctor
12345 Hellmann 03.01.1981 94142 Hypertension White
98765 Dooley 07.10.1953 94141 Obesity Warren
24689 McKinley 12.02.1952 94142 Hypertension White
13579 Ripley 03.01.1981 94139 Obesity Warren

Fig. 1. Example of a relational instance containing sensitive associations

Obviously, there is a goal conflict between the discussed “database as a ser-
vice” paradigm and confidentiality requirements because the service provider
cannot be restrained from reading all cleartext information stored in its sys-
tems. One natural approach to cope with that conflict lies in encrypting all
outsourced data on the user side [12,13]. But, unfortunately, such an approach
often makes the efficient evaluation of queries on the server side impossible [2,9].

The benefit of encryption of data lies in making these data – and also the
information contained in these data – illegible. But often, in relational database
systems single pieces of information are not confidential per se. Due to the stor-
age of data according to some (static) relational schema, semantic associations
between different pieces of information are represented and often only these asso-
ciations are confidential [9]. For example, in a hospital the list of illnesses cured
and the list of patients are both not particularly sensitive per se. In contrast,
an association between a patient’s name and a specific illness is very sensitive
and has to be protected. An example adapted from [9] of a relational instance
containing this sensitive association among others is given in Fig. 1.

To achieve this protection, some authors suggest to break sensitive associa-
tions by splitting relational instances vertically, which is referred to as vertical
fragmentation. There are several different approaches to achieving confidentiality
based on vertical fragmentation surveyed in [13] and for each of these approaches
the corresponding authors describe how fragments of an original relational in-
stance can be outsourced so that unauthorised (direct) accesses to confidential
information are prohibited. But it is not shown that confidential information
cannot be inferred by employing inferences, which may offer the possibility to
infer confidential information based on the knowledge of non-confidential infor-
mation [11]. Moreover, it is not considered that an attacker often has some a
priori knowledge, which might enable him to infer confidential information [6].

In contrast, there are several approaches to so-called Controlled Query Eval-
uation (CQE) surveyed in [4] and for each of these approaches it is proven that
a declared confidentiality policy is enforced so that any harmful inferences are
avoided. “Inference-proofness” is achieved by limiting a user’s information gain
so that this user cannot infer protected information reliably based on his a priori
knowledge and the (possibly distorted) answers to his queries.

The main novel contribution of this article consists of a formal analysis of
a specific approach to vertical fragmentation – splitting a relational instance
into one externally stored part and one locally-held part – w.r.t. its inference-
proofness. More specifically, based on the seminal ideas proposed in [7,8], a
formalisation of this approach to vertical fragmentation is developed in Sect. 2.
After introducing the framework of CQE briefly in Sect. 3, a logic-oriented mod-
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Fo tid SSN Name DoB
1 12345 Hellmann 03.01.1981
2 98765 Dooley 07.10.1953
3 24689 McKinley 12.02.1952
4 13579 Ripley 03.01.1981

Fs tid ZIP Illness Doctor
1 94142 Hypertension White
2 94141 Obesity Warren
3 94142 Hypertension White
4 94139 Obesity Warren

Fig. 2. Possible fragmentation of the instance given in Fig. 1

elling of the approach to vertical fragmentation presented in Sect. 2 within the
framework of CQE is introduced in Sect. 4 and subsequently analysed w.r.t. its
inference-proofness in Sect. 5. Thereby an attacker’s a priori knowledge in terms
of a rather general class of semantic database constraints is respected.

2 Confidentiality by Fragmentation

Now, the approach to vertical fragmentation (in the following simply referred
to as fragmentation) presented in [7,8] is extended. In this approach all data is
stored in a single relational instance r over a relational schema 〈R|AR|SCR〉 with
relational symbol R and the set AR = {a1, . . . , an} of attributes. Moreover, the
set SCR contains some semantic (database) constraints, which must be satisfied
by each relational instance constructed over this schema. Note that semantic
constraints are not considered in [7,8] (hence there SCR = ∅).

The approach considered is built on the assumption of a client-server archi-
tecture, in which the server is managed by a third party service provider. This
third party service provider is not considered to be trustworthy in terms of confi-
dentiality and might actively monitor all queries processed and all data stored on
its server. But it is assumed to be guaranteed that this service provider does not
manipulate data maliciously so that all data received from the server is always
correct in terms of integrity. The client used in this architecture is assumed to be
completely trustworthy and also has the ability to store (a limited amount of)
data locally. But as this local storage is assumed to be more expensive than the
external storage, it is desirable to store as much data as possible on the server.

The idea for achieving confidentiality despite outsourcing (some) data lies
in splitting the original instance r over schema 〈R|AR|SCR〉 into two fragment
instances fo and fs stored instead of r. While fs may be outsourced to an
external server, fo can only be stored locally on the client.1 To build fo and fs,
the attribute set AR of schema 〈R|AR|SCR〉 is partitioned into two sets ĀFo

and ĀFs (items (i), (iii) of Def. 1). Then fragment instance fo (fs, respectively)
is in essence the projection of r on ĀFo

(ĀFs
) (item (a) of Def. 1). Obviously, in

terms of confidentiality no sensitive information or association is allowed to be
contained in fragment instance fs. Such a fragmentation of the instance given
in Fig. 1 (e.g., breaking the name-illness association) is depicted in Fig. 2.

As an authorised user having access to the client as well as to the server
should be able to query all information contained in the original instance r, the
reconstructability of r based on the fragments fo and fs must be guaranteed. For
1 Index s is for server and index o is for owner-side (local) storage.
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this purpose each tuple in fo and fs is extended by a tuple ID (item (i) of Def. 1)
so that in fo and fs exactly those two tuples (one tuple per fragment instance)
which together correspond to a tuple of r share the same tuple ID (item (c) of
Def. 1) being unique in fo as well as in fs (item (b) of Def. 1). Strategies for
processing SQL queries referring to the original instance on the corresponding
fragment instances efficiently are discussed in [7].

Based on the seminal ideas proposed in [7,8] a formalisation of this concept
of fragmentation is developed in this article as follows:

Definition 1 (Fragmentation). Given a relational schema 〈R|AR|SCR〉, a
vertical fragmentation F of 〈R|AR|SCR〉 is a set

F = {〈Fo|AFo |SCFo〉, 〈Fs|AFs |SCFs〉}

in which 〈Fo|AFo |SCFo〉 and 〈Fs|AFs |SCFs〉 are relational schemas called frag-
ments of F . Moreover, for i ∈ {o, s}, it holds that

(i) AFi
:= {atid} ∪ ĀFi

with atid /∈ AR and ĀFi
⊆ AR,

(ii) SCFi
:= {atid → ĀFi

} with atid → ĀFi
being a functional dependency,

(iii) ĀFo
∪ ĀFs

= AR and ĀFo
∩ ĀFs

= ∅.

Given a relational instance r over 〈R|AR|SCR〉, the fragment instances fo and
fs over 〈Fo|AFo

|SCFo
〉 and 〈Fs|AFs

|SCFs
〉 are created by inserting both the tuple

νo into fo and the tuple νs into fs for each tuple µ ∈ r. Thereby, for i ∈ {o, s}:

(a) νi[a] = µ[a] for each attribute a ∈ ĀFi
,

(b) ν′[atid] 6= ν′′[atid] for tuples ν′, ν′′ ∈ fi with ν′ 6= ν′′,
(c) νo[atid] = νs[atid] for attribute atid ∈ AFo

, AFs
.

Other tuples do not exist in fo and fs.

Note that even for two different tuples of r which are equal w.r.t. all attributes
of ĀFs (ĀFo , respectively) there are also two different tuples in fs (fo) which are
equal w.r.t. all attributes of ĀFs

(ĀFo
) because of the existence of unique tuple

IDs. Hence, for each tuple µ of r there is exactly one tuple νs in fs as well as
one tuple νo in fo. If there were no tuple IDs, all duplicates of tuples in fs (fo)
would be removed. In terms of the example in Fig. 2 the first and the third tuple
of fs would be consolidated without the existence of tuple IDs.

As the goal is to achieve confidentiality by fragmentation, a formal declara-
tion of confidentiality requirements is indispensable. In [7,8] this is obtained by
defining a set of so-called confidentiality constraints on the schema level.

Definition 2 (Confidentiality Constraint). Let 〈R|AR|SCR〉 be a relational
schema. A confidentiality constraint c over 〈R|AR|SCR〉 is a subset c ⊆ AR.

Semantically a confidentiality constraint c claims that each combination of
values allocated to the set c ⊆ AR of attributes in an instance r over schema
〈R|AR|SCR〉 should not be contained completely in fs. In fo such a combination
of values may be contained completely since fo is only stored locally.
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c1 = {SSN} c3 = {Name, Illness}
c2 = {Name, DoB} c4 = {DoB, ZIP, Illness}

Fig. 3. Set C of confidentiality constraints over Patient

Definition 3 (Confidentiality of Fragmentation). Let 〈R|AR|SCR〉 be a
relational schema, F a fragmentation of 〈R|AR|SCR〉 according to Def. 1 and C
a set of confidentiality constraints over 〈R|AR|SCR〉 according to Def. 2. Frag-
mentation F is confidential w.r.t. C iff c 6⊆ AFs

for each c ∈ C.

Note that in case of a singleton constraint c = {ai} a fragmentation can
only be confidential if the column of values allocated to ai in an instance r over
〈R|AR|SCR〉 is not contained in fs. So, a singleton constraint states that the
values allocated to an attribute are sensitive per se. In case of a non-singleton
constraint c at least one attribute ai ∈ c must not be contained in AFs and as a
consequence of that the corresponding column of an instance r over 〈R|AR|SCR〉
is not in fs. But in terms of Def. 3 it is irrelevant which of the attributes in c is
chosen for not being in AFs

and hence only associations between values allocated
to the attributes of c in an instance r over 〈R|AR|SCR〉 are protected.

An example of a set of confidentiality constraints in terms of the running
example introduced in Fig. 1 is given in Fig. 3. The fragmentation depicted in
Fig. 2 is confidential w.r.t. this set of confidentiality constraints.

In terms of Def. 3 one trivial but feasible solution always is to store all data
locally on the client. But since as much data as possible should be stored exter-
nally, an optimization problem proven to be NP-hard in [8] has to be solved. To
achieve that, an approximation algorithm and several metrics to compare the
qualities of computed solutions are presented in [8].

3 Controlled Query Evaluation

In the remainder of this article the inference-proofness of fragmentation is dis-
cussed based on a logic-oriented modelling of fragmentation within the frame-
work of Controlled Query Evaluation (CQE). This framework comprises several
inference-proof approaches to CQE, which are all based on the same classes of
components. These classes and the general procedures of CQE will be introduced
briefly on a fairly abstract level based on [4] now.

CQE is a framework with a server hosting a database instance. Although
answering queries sent by users, one of the goals of the CQE system is to limit
a user’s information gain – even by considering information that a user could
possibly obtain by employing logical inferences – according to some confidential-
ity policy. This is achieved by determining each piece of information a (rational)
user can possibly infer based on his knowledge before interacting with this user.

To be able to do so, the monitoring of raw data a user receives as answers to
his queries is not sufficient. The information contained in these data has to be
extracted and represented suitably so that it can be processed. For that purpose
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the information system considered is assumed to be logic-based in the sense that
its database instance is represented by a set of (closed) formulas of a well-defined
language of logic (e.g., first-order logic) and the semantics of query evaluation is
founded on the (well-defined) notions of validity and implication defined in the
context of the semantics of this language.

As inferences can be often drawn by combining several pieces of knowledge,
the computation of all inferences a user can employ (based on logical impli-
cations) presupposes that the CQE system needs to be aware of the complete
knowledge this user has. In case of dynamic CQE – which aims at controlling a
user’s information gain at runtime – this obviously means that all answers a user
receives in response to his queries have to be recorded as a set of formulas in
order to be able to decide whether this knowledge combined with the (correct)
answers to subsequent queries provides a basis for drawing harmful inferences.

Regardless of using dynamic or static CQE, a user’s a priori knowledge ex-
pressed as a set of formulas always has to be considered. This a priori knowledge
comprises knowledge a user has independently of answers given by the infor-
mation system considered (e.g., semantic constraints declared for the schema
of a relational database or knowledge about the world in general). Although
not being harmful per se, such a priori knowledge combined with (uncontrolled)
answers to his queries might enable a user to draw some harmful inferences.

To express the knowledge to be kept secret from a specific user, a confiden-
tiality policy in terms of a set of potential secrets is set up for each user. A
potential secret Ψ is a formula expressing that the pertinent user must not be
able to infer that the information embodied in Ψ is true in the database consid-
ered. So, regardless of whether Ψ is actually true in this database or not, from
the point of view of this user (established by his a priori knowledge and answers
to his queries) it must always be possible that Ψ is not true. The conservative
approach that a user is aware of the policy set up for him is usually followed.

As already hinted above, there are two general modes of inference control.
The dynamic mode controls each answer to a user’s query at runtime and there-
fore the CQE system has to check whether the user’s (assumed) knowledge com-
bined with the (correct) answer to his query could enable him to infer some
knowledge declared as confidential (i.e., knowledge embodied in a potential se-
cret is implied logically). If this is the case, the system has to distort the answer
suitably by lying (i.e., giving a wrong answer) or by refusing an answer at all.
The combined usage of both techniques is possible, too.

In static mode the CQE system precomputes an alternative database instance
for each user, which is inference-proof according to the confidentiality policy set
up for the pertinent user. Although being as close as possible to the original
database instance, the alternative instance is distorted by lies or refusals (i.e.,
missing values) so that the user can query it freely without receiving knowledge
enabling him to draw harmful inferences. So, corresponding to the idea of frag-
mentation that the server knows the externally stored fragment completely, the
user’s knowledge may comprise the complete alternative instance.
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4 A Logic-Oriented View on Fragmentation

The goal of this article is to discuss the inference-proofness of the approach
to fragmentation presented in Sect. 2. As CQE is known to be inference-proof,
the main idea is to model fragmentation within the framework of CQE. As
CQE relies on a logic-oriented view on databases, the approach to fragmentation
discussed in Sect. 2 has to be modelled logic-orientedly, too.

For that purpose a language L of first-order logic with equality, which is
suitable for modelling fragmentation logic-orientedly, is presented now. As the
externally stored fragment instance fs over 〈Fs|AFs |SCFs〉, which is assumed
to be known to an attacker, must be modelled in L , the set P of predicate
symbols of L contains the predicate symbol Fs ∈ P with arity k + 1 = |AFs

|
(including the additional tuple ID attribute plus k original attributes (cf. Fig. 4)).
As security should not rely on obscurity, it is assumed that an attacker is aware
of the process of fragmentation and knows both the computed fragmentation F
and the schema 〈R|AR|SCR〉 over which the original instance r – being the target
of his attacks – is built. To be able to model an attacker’s knowledge about r
based on these assumptions, language L also contains a predicate symbol R ∈ P
with arity n = |AR|. Moreover, there is a distinguished binary predicate symbol
= /∈ P for expressing equality. A predicate symbol Fo is not needed since an
attacker does not have access to the client by assumption.

The language L also comprises the set Dom of constant symbols, which will
be employed for the universe of interpretations for L as well. In compliance with
other approaches to CQE (e.g., [5]) this set is assumed to be fixed and infinite.
Further, L includes an infinite set Var = {X1, X2, . . .} of variables.

All formulas contained in L are constructed inductively in the natural fash-
ion using the quantifiers ∀ and ∃ and the connectives ¬, ∧, ∨ and ⇒. Thereby
each term is either a constant or a variable (functions are not allowed) and each
variable is quantified (only closed formulas are in L ).

This syntactic specification has to be complemented with an appropriate se-
mantics in which the characteristics of databases are reflected. Such a semantics
is established by a so-called DB-Interpretation according to [5]:

Definition 4 (DB-Interpretation). Given the language L of first-order logic
with a fixed infinite set of constant symbols Dom and a finite set P of predicate
symbols, an interpretation I over a universe U is a DB-Interpretation for L iff

(i) U = Dom,
(ii) I(v) = v ∈ U holds for every constant symbol v ∈ Dom,
(iii) every P ∈ P with arity m is interpreted by a finite relation I(P ) ⊂ Um,
(iv) the predicate symbol = /∈ P is interpreted by I(=) = {(v, v) | v ∈ U}.

The semantics of satisfaction of formulas in L by a DB-Interpretation is the
same as in usual first-order logic. A set S ⊂ L of formulas implies a formula
Φ ∈ L (written as S |=DB Φ) iff each DB-Interpretation I satisfying S (written
as I |=M S) also satisfies Φ (written as I |=M Φ).
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atid a1 . . . . . . . . . . . . . . . . . . ak ak+1 . . . . . . . . . . . . . . . . . . . . . an

AFs \AR AFs ∩AR AR \AFs

r over 〈R|AR|SCR〉

fs over 〈Fs|AFs |SCFs〉

Fig. 4. Rearrangement of columns of r

db+fs = { Fs ( 1, 94142, Hypertension, White ),

Fs ( 2, 94141, Obesity, Warren ),
Fs ( 3, 94142, Hypertension, White ),
Fs ( 4, 94139, Obesity, Warren ) }

Fig. 5. Positive knowledge of fs in a logic-oriented model

From now on suppose w.l.o.g. that the columns of a relational instance r
under investigation are rearranged so that the first k columns of r correspond
to the projection of fs on AFs ∩AR. This convention is visualised in Fig. 4.

As an attacker is supposed to know the outsourced fragment instance fs, the
knowledge contained in fs obviously has to be modelled within the logic-oriented
view representing an attacker’s knowledge. The positive knowledge in terms of
the tuples explicitly recorded in fs can be simply modelled logic-orientedly by
adding an atomic formula Fs(ν[atid], ν[a1], . . . , ν[ak]) for each tuple ν ∈ fs. Re-
garding the fragmentation of Fig. 2 such a set of formulas is given in Fig. 5

But as the original instance r – and so its fragment instance fs – is assumed
to be complete2, each piece of information not contained in r (fs, respectively)
is considered to be not valid by Closed World Assumption (CWA). Hence, an
attacker knows that each combination of values (vtid, v1, . . . , vk) ∈ Domk+1 not
contained in any tuple of fs is not true. This implicitly induces information
expressed as ¬Fs(vtid, v1, . . . , vk). But as Dom is infinite, there is also an infinite
number of such combinations not contained in the finite instance fs.

As this negative knowledge is not explicitly enumerable, it is expressed im-
plicitly by a so-called completeness sentence (cf. [5]) having a universally quan-
tified variable Xj for each attribute aj ∈ AFs

. This completeness sentence is
constructed so that it is satisfied by a DB-Interpretation I iff I satisfies each
formula ¬Fs(vtid, v1, . . . , vk) with (vtid, v1, . . . , vk) ∈ Domk+1 being a constant
combination (substituting the universally quantified variables Xtid, X1, . . . Xk of
the completeness sentence) which is not contained in any tuple of fs.
2 As there are no statements about the completeness of r or fs in [7,8] this article
relies on the assumption of complete instances.
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In terms of the running example the knowledge implicitly known to be not
valid by CWA can be expressed as the following completeness sentence:

(∀Xt)(∀XZ)(∀XI)(∀XD) [
(Xt = 1 ∧ XZ = 94142 ∧ XI = Hypert. ∧ XD = White) ∨
(Xt = 2 ∧ XZ = 94141 ∧ XI = Obesity ∧ XD = Warren) ∨
(Xt = 3 ∧ XZ = 94142 ∧ XI = Hypert. ∧ XD = White) ∨
(Xt = 4 ∧ XZ = 94139 ∧ XI = Obesity ∧ XD = Warren) ∨
¬Fs(Xt, XZ , XI , XD) ]

Based on this insight an attacker’s knowledge about the fragment instance
fs can be formalised logic-orientedly as follows:

Definition 5 (Logic-Oriented View on fs). Given a fragment instance fs
over 〈Fs|AFs

|SCFs
〉 according to Def. 1 with AFs

= {atid, a1, . . . , ak}, the posi-
tive knowledge contained in fs is modelled in L by the set of formulas

db+fs := {Fs(ν[atid], ν[a1], . . . , ν[ak]) | ν ∈ fs} . (1)

The implicit negative knowledge contained in fs is modelled in L by the singleton
set db−fs containing the completeness sentence

(∀Xtid) . . . (∀Xk)

 ∨
ν∈fs

 ∧
aj∈AFs

(Xj = ν[aj ])

 ∨ ¬Fs(Xtid, X1, . . . , Xk)

 .
(2)

Moreover the functional dependency atid → {a1, . . . , ak} ∈ SCFs
is modelled in

L by the singleton set fdFs
containing the formula

(∀Xtid) (∀X1) . . . (∀Xk) (∀X ′1) . . . (∀X ′k) [Fs(Xtid, X1, . . . , Xk) ∧
Fs(Xtid, X

′
1, . . . , X

′
k)⇒ (X1 = X ′1) ∧ . . . ∧ (Xk = X ′k) ]

(3)

Overall the logic-oriented view on fs in L is dbfs := db+fs ∪ db
−
fs
∪ fdFs

.

As already stated above, an attacker is assumed to know the process of
fragmentation. This allows him to know that for each tuple ν ∈ fs there is also
a tuple µ ∈ r which is equal to ν w.r.t. the values allocated to the attributes of
AFs ∩ AR. Moreover, being aware of both 〈Fs|AFs |SCFs〉 and 〈R|AR|SCR〉, an
attacker knows that the values allocated to the attributes of AR \ AFs are kept
hidden from him in each tuple of r. Regarding the logic-oriented modelling of
an attacker’s knowledge the ignorance of these values can be stated by using an
existentially quantified variable for each term representing such a value.

Moreover – because of the completeness of r and fs – an attacker knows that
for each combination of values (vtid, v1, . . . , vk) ∈ Domk+1 not contained in any
tuple of fs, there is no tuple µ ∈ r with µ[aj ] = vj for each j ∈ {1, . . . , k}.
Otherwise there would be a tuple ν ∈ fs containing this combination of values
because of the process of fragmentation. So, equivalently, for each tuple µ ∈ r
there exists a tuple ν ∈ fs with ν[aj ] = µ[aj ] for each j ∈ {1, . . . , k}.
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As already mentioned in Sect. 2, there is exactly one tuple in fs for each
tuple of r because of the existence of unique tuple IDs in fs. So, if there are
two different tuples ν1, ν2 ∈ fs being equal w.r.t. the values allocated to the
attributes of AFs ∩ AR, an attacker can reason that there are also two tuples
µ1, µ2 ∈ r which are equal w.r.t. the values allocated to AFs

∩AR, but differ in
at least one of the values allocated to AR \ AFs

. Otherwise r would have two
equal tuples µ1 = µ2 which is not possible in relational instances.

For now neglecting semantic constraints of the schema of r (i.e., SCR = ∅),
a logic-oriented view on the (hidden) original instance r based on the knowledge
of the outsourced fragment instance fs can be modelled as follows:

Definition 6 (Logic-Oriented View on r). Let 〈Fs|AFs
|SCFs

〉 with AFs
=

{atid, a1, . . . , ak} be the outsourced fragment of a fragmentation F of a relational
schema 〈R|AR|SCR〉 with AR = {a1, . . . , ak, . . . , an} and let fs be a fragment
instance over 〈Fs|AFs

|SCFs
〉 w.r.t. a relational instance r over 〈R|AR|SCR〉.

The knowledge about r received from fs is expressed by

(∀X1) . . . (∀Xk) [ (∃Xtid)Fs(Xtid, X1, . . . , Xk)⇔
(∃Xk+1) . . . (∃Xn)R(X1, . . . , Xk, Xk+1, . . . , Xn) ]

(4)

and the knowledge received from preserving duplicates in fs is expressed by

(∀X1) . . . (∀Xk) [ (∃Xtid) (∃X ′tid) [Fs(Xtid, X1, . . . , Xk)∧
Fs(X

′
tid, X1, . . . , Xk) ∧ (Xtid 6= X ′tid) ]⇒

(∃Xk+1) . . . (∃Xn)
(
∃X ′k+1

)
. . . (∃X ′n) [R(X1, . . . , Xk, Xk+1, . . . , Xn)∧

R(X1, . . . , Xk, X
′
k+1, . . . , X

′
n) ∧

n∨
j=k+1

(Xj 6= X ′j) ] ] .

(5)

This view on r is referred to as the set of formulas dbr containing (4) and (5).

Before the inference-proofness of fragmentation can be analysed formally,
the confidentiality policy according to which a fragmentation is computed has
to be modelled logic-orientedly, too. A confidentiality constraint c ⊆ AR claims
that each combination of values allocated to the attributes of c should not be
revealed to an attacker completely. To specify this semantics more precisely, it is
assumed3 that c only protects those combinations of values which are explicitly
allocated to the attributes of c in a tuple of r. In contrast, an attacker may get
to know that a certain combination of values is not allocated to the attributes
of c in any tuple of r. This semantics complies with the semantics of potential
secrets known from the CQE framework (cf. Sect. 3).

The wish to protect a certain combination of values (vi1 , . . . , vi`) ∈ Dom |c|

can be modelled as a potential secret (∃X)R(t1, . . . , tn) in which tj := vj holds
for each j ∈ {i1, . . . , i`}. All other terms are existentially quantified variables.
3 This assumption is needed because the semantics of confidentiality constraints on
the instance level is not defined as exactly in [7,8].
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But simply modelling each combination of values allocated to the pertinent at-
tributes in r as a potential secret is not sufficient because an attacker is supposed
to be aware of the confidentiality policy and could consequently read all sensitive
information directly from the policy. This is prevented by protecting each combi-
nation of values possible according to Dom, regardless of whether it is contained
in a tuple of r or not. But enumerating all of these combinations explicitly is
not manageable since Dom is infinite.

Equivalently to the enumeration of all combinations of values, free variables
Xi1 , . . . , Xi` can be used in a potential secret instead of the constants vi1 , . . . , vi` .
Then, one single potential secret per confidentiality constraint is sufficient. For
that purpose the extended language L f ⊃ L of first-order logic expanding L
by free variables is introduced.

Definition 7 (Confidentiality Policy). Let C be a set of confidentiality con-
straints over schema 〈R|AR|SCR〉 according to Def. 2. Considering a confiden-
tiality constraint ci ∈ C with ci = {ai1 , . . . , ai`} ⊆ {a1, . . . , an} = AR and the set
AR \ ci = {ai`+1

, . . . , ain}, constraint ci can be modelled as a potential secret

Ψi(Xi) := (∃Xi`+1
) . . . (∃Xin)R(X1, . . . , Xn)

in the extended language L f . Thereby Xi = (Xi1 , . . . , Xi`) is the vector of free
variables contained in Ψi(Xi). The set containing exactly one potential secret
Ψi(Xi) constructed as above for every ci ∈ C is called pot_sec(C).

To show the inference-proofness of fragmentation, it has to be proven that
none of the potential secrets is implied by the set of formulas representing an
attacker’s knowledge. This proof cannot be produced (directly) for potential
secrets containing free variables because DB-Interpretations are only defined
for the language L not containing free variables. But as free variables of L f

represent constants of Dom, a so-called expansion of such formulas substituting
free variables with constants can be constructed to enable the proof.

Definition 8 (Expansion of Formulas). Let Ψ(X) ∈ L f be a formula con-
taining the vector X = (X1, . . . , X`) of free variables. Ψ(X) ∈ L f is expanded
to the set of formulas ex(Ψ(X)) ⊂ L by substituting the free variables X with
every constant combination v = (v1, . . . , v`) ∈ Dom`, thereby creating a formula
Ψ(v) ∈ L . The expansion of a set S ⊂ L f is ex(S) :=

⋃
Ψ(X)∈S ex(Ψ(X)).

5 Inference-Proofness of Fragmentation

Until now the logic-oriented model only comprises knowledge an attacker has
by knowing the outsourced fragment instance. The a priori knowledge an at-
tacker might have has been completely neglected. But as shown in the following
example, an attacker might generally employ this knowledge to draw harmful
inferences. In terms of the running example, suppose an attacker knows that
Ripley is the only patient who is treated by doctor Warren and lives in a small
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town with zip code 94139. By knowing the set of formulas db+fs (see Fig. 5)
and moreover knowing the relationship between fs and its original instance de-
scribed by formula (4) of Def. 6, an attacker might reason that Ripley suffers
from Obesity, thereby violating confidentiality constraint c3 of Fig. 3.

In this article an attacker is supposed to have a priori knowledge about the
original instance r in terms of the set SCR of semantic constraints declared for
schema 〈R|AR|SCR〉. Here, SCR is a set of arbitrary unirelational and typed se-
mantic constraints as long as they belong to the rather general classes of so-called
Equality Generating Dependencies (EGDs) or Tuple Generating Dependencies
(TGDs), which together comprise nearly all semantic constraints (cf. [1]).

Intuitively expressed, an EGD claims that the presence of some tuples in r
implies that certain components of these tuples are equal and a TGD claims
that the presence of some tuples in r implies the existence of certain other tu-
ples in r. Moreover, a constraint is unirelational if it refers to only one relational
schema, and it is typed if there is an assignment of variables to column positions
preventing the claim for equality of values being in different columns of r [1].
In the case of non-typed constraints, for example, an attacker might infer sen-
sitive information based on a non-typed EGD stating that in some tuple of r a
(non-hidden) value allocated to an attribute of ĀFs

is equal to a (hidden) value
allocated to an attribute of ĀFo . A well known example for a unirelational and
typed EGD is a functional dependency and an example for a unirelational and
typed TGD is a join dependency.

According to [1,10] unirelational and typed EGDs and TGDs can be for-
malised as follows:

Definition 9 (Unirelational Typed TGDs/EGDs). Let 〈R|AR|SCR〉 be a
relational schema. Each unirelational EGD/TGD contained in SCR can be ex-
pressed in L by a formula (∀X) [α⇒ β], in which

(i) α is a conjunction of atomic formulas of the kind R(X1, . . . , Xn) with
X1, . . . , Xn being variables of X and every variable of X appears in α,

(ii) in case of a/an
– EGD, β is an atomic formula of the kind (X ′ = X ′′) with X ′ and X ′′

being distinct variables of X
– TGD, β is a formula (∃Y ) γ, in which γ is a conjunction of atomic

formulas of the kind R(X1, . . . , Xn) with X1, . . . , Xn being variables of
X and Y .

A unirelational EGD/TGD is typed iff the set Var of Variables of L can be
partitioned into n disjoint classes so that, for each atomic formula of the kind
R(Xi1 , . . . , Xin) of α or β, for 1 ≤ j ≤ n, the variable Xij belongs to class j,
and for each atomic formula of the kind (X ′ = X ′′) both variables X ′ and X ′′
belong to the same class.

For n = 3, for example, (∀X) [R(X1, X2, X3) ⇒ (X1 = X3) ] is a non-
typed EGD and (∀X) [R(X1, X2, X3) ⇒ R(X1, X3, X2) ] is a non-typed TGD.
In contrast, (∀X) [R(X1, X2, X3) ∧ R(X1, X

′
2, X

′
3) ⇒ (X3 = X ′3) ] is a typed

EGD and replacing (X3 = X ′3) with R(X1, X
′
2, X3) results in a typed TGD.
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Now, the inference-proofness of fragmentation can be proved formally based
on the logic-oriented modelling of the view an attacker is supposed to have on
the original instance r by knowing the externally stored fragment instance fs
and employing his a priori knowledge. Intuitively expressed, it is shown that a
rational attacker always has to consider the existence of an alternative instance
r′ possible which is – from his point of view constituted by his knowledge –
indistinguishable from r and does not violate a potential secret.

Theorem 1 (Inference-Proofness). Let r be a relational instance over a rela-
tional schema 〈R|AR|SCR〉 with AR = {a1, . . . , an} and let F be a fragmentation
of 〈R|AR|SCR〉 according to Def. 1, which is – according to Def. 3 – confiden-
tial w.r.t. a set C of confidentiality constraints constructed in terms of Def. 2.
Moreover, let fs be the fragment instance over fragment 〈Fs|AFs |SCFs〉 ∈ F with
AFs = {atid, a1, . . . , ak} created w.r.t. instance r. It holds that

for all Ψ(v) ∈ ex(pot_sec(C)) : dbfs ∪ dbr ∪ priorSCR
6|=DB Ψ(v) (6)

with ex(pot_sec(C)) being the expansion (Def. 8) of pot_sec(C) constructed ac-
cording to Def. 7 and dbfs and dbr being constructed according to Def. 5 and
Def. 6. Moreover, priorSCR

is a set of unirelational typed TGDs and EGDs con-
tained in SCR, which are constructed in terms of Def. 9 and satisfied by r.

Proof. To prove formula (6) of Theorem 1, it has to be shown that for an arbi-
trary Ψ̃(v) ∈ ex(pot_sec(C)) with v = (vi1 , . . . , vi`) there is a DB-Interpretation
I∗ which satisfies dbfs , dbr and priorSCR

and does not satisfy Ψ̃(v).
As Ψ̃(v) with v = (vi1 , . . . , vi`) is in ex(pot_sec(C)), there has to be the

potential secret Ψ̃(X) ∈ pot_sec(C) containing the vector X = (Xi1 , . . . , Xi`)
of free variables and therefore, by construction of pot_sec(C), there also exists
a confidentiality constraint c = {ai1 , . . . , ai`} ∈ C. Due to F being confidential
by assumption, c 6⊆ AFs

holds (see Def. 3) and as a consequence of that there is
an attribute am ∈ c with am /∈ AFs

. Hence, respecting the rearrangement of the
columns of r (see Fig. 4), both m /∈ {1, . . . , k} and m ∈ {k + 1, . . . , n} hold.

As a first step towards the construction of I∗, the interpretation of the pred-
icate symbol Fs – that is I∗(Fs) – is defined as

I∗(Fs) := { (ν[atid], ν[a1], . . . , ν[ak]) | ν ∈ fs } (7)

and obviously this interpretation satisfies all formulas of db+fs as well as the
closed world assumption contained in db−fs . Moreover, fdFs

is satisfied because,
by assumption, fs satisfies the functional dependency contained in SCFs

and
hence also (3) is satisfied by I∗(Fs). So, I∗ |=M dbfs already holds.

Continuing the construction of I∗, the set I∗(R) is defined as

I∗(R) := { (µ[a1], . . . , µ[am−1], ϕm(µ[am]), µ[am+1], . . . , µ[an]) | µ ∈ r } (8)

in which ϕm : Um → U \ {vm} is an injective function having the finite domain
Um := {µ[am] | µ ∈ r } and the infinite range U \{vm} with vm ∈ v and U being
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the universe of I∗ (cf. Def. 4). Note that ϕm can always be constructed because
of | U \ {vm}| > | Um|. Moreover, I∗ 6|=M Ψ̃(v) holds as vm ∈ (vi1 , . . . , vi`) is
excluded from the range of ϕm and I∗ can only satisfy Ψ̃(v) if there is a tuple
(u1, . . . , um, . . . , un) ∈ I∗(R) for which uj = vj holds for each j ∈ {i1, . . . , i`}.

Next, it is shown that I∗ |=M dbr holds by proving that I∗ satisfies the for-
mulas (4) and (5) of Def. 6. To prove the if-part of the equivalence, assume that
(∃Xtid)Fs(Xtid, X1, . . . , Xk) of (4) is satisfied by I∗ under a constant substitu-
tion (X1/u1), . . . , (Xk/uk) which is feasible according to Dom. Then, according
to (7), there is a tuple (wtid, u1, . . . , uk) ∈ I∗(Fs) with wtid ∈ U implying the ex-
istence of a tuple ν ∈ fs with ν[aj ] = uj for all j ∈ {1, . . . , k}. As fs is a fragment
instance of r (see Def. 1) and the columns of r are rearranged as described above,
there is a tuple µ ∈ r with µ[aj ] = ν[aj ] for all j ∈ {1, . . . , k}. According to (8)
and because ofm /∈ {1, . . . , k} there is a tuple (u1, . . . , uk, wk+1, . . . , wn) ∈ I∗(R)
satisfying the conclusion. To finally establish the equivalence, the only-if-part can
be proved by applying the argumentation presented above backwards.

To prove formula (5) of Def. 6, assume that the premise of (5) is satisfied by
I∗ under a constant substitution (X1/u1), . . . , (Xk/uk) which is feasible accord-
ing to Dom. Then there are two tuples (wtid, u1, . . . , uk) and (w′tid, u1, . . . , uk)
in I∗(Fs) and wtid 6= w′tid holds for wtid, w

′
tid ∈ U . Because of the construc-

tion of I∗(Fs) described in (7) there are two different tuples ν, ν′ ∈ fs with
ν[aj ] = ν′[aj ] = uj for all j ∈ {1, . . . , k}. Due to the existence of exactly one
tuple in fs for each tuple in r (cf. Sect. 2), it can be reasoned that there are
also two tuples µ, µ′ ∈ r with µ[aj ] = µ′[aj ] = uj for each j ∈ {1, . . . , k}.
As relational instances cannot contain two identical tuples, µ[ap] 6= µ′[ap] must
hold for some p ∈ {k + 1, . . . , n} and according to (8) there are two tuples
(u1, . . . , uk, wk+1, . . . , wn) and (u1, . . . , uk, w

′
k+1, . . . , w

′
n) in I∗(R). In the case

of p 6= m, obviously wp 6= w′p holds, and otherwise wm 6= w′m holds because of
ϕm being injective. Hence, the conclusion of (5) is satisfied by I∗, too.

As a last step I∗ |=M priorSCR
has to be proved. This is prepared by con-

structing a temporary DB-Interpretation It for r as a set

It(R) := { (µ[a1], . . . , µ[am], . . . , µ[an]) | µ ∈ r } (9)

and as (by assumption) r satisfies all constraints of SCR, all formulas of priorSCR

are satisfied by It, too.
As there are no constants in formulas of priorSCR

since all terms of these
formulas are quantified variables (cf. Def. 9), an arbitrary DB-Interpretation I
satisfying priorSCR

does not need to contain tuples with specific combinations
of values corresponding to combinations of constants in formulas of priorSCR

.
Hence, I still satisfies priorSCR

if values in tuples of I are exchanged by other
values of U so that all equalities (to satisfy equalities between variables in for-
mulas of priorSCR

) and diversities (to prevent the creation of further equalities
resulting in more implications that need to be satisfied) between values of I are
preserved. Moreover, as formulas of priorSCR

are typed, values of I can be ex-
changed as long as all equalities and diversities between values of I are preserved
within each column of I.
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Obviously, there is a tuple (u1, . . . , um, . . . , un) ∈ It(R) iff there is a tuple
(u1, . . . , ϕm(um), . . . , un) ∈ I∗(R) and as ϕm is injective, two values u′m and u′′m
of U are equal iff ϕm(u′m) = ϕm(u′′m). Hence, I∗ |=M priorSCR

holds. ut

6 Conclusion and Future Work

Motivated by the wish to achieve confidentiality of information hosted by third
party service providers without the usage of encryption, the approach to frag-
mentation presented in Sect. 2 is developed in [7,8]. In these articles the protec-
tion of information is discussed only in terms of direct accesses to data. It is
not shown that confidential information cannot be inferred based on the knowl-
edge of non-confidential information contained in the externally stored fragment
instance fs and a priori knowledge an attacker might possibly have.

This desirable result is presented in this article under the supposition that
an attacker only has a priori knowledge in terms of Equality Generating De-
pendencies and Tuple Generating Dependencies which are all unirelational and
typed. Regarding the possibilities to express knowledge about semantic con-
straints declared for the schema of an original instance r, this supposition is not
very restrictive as most of the semantic constraints commonly used (e.g., func-
tional dependencies, join dependencies) belong to these classes of constraints [1].
Moreover, reconsidering the proof of Theorem 1, it can be seen easily that the
inference-proofness still holds if the restriction that semantic constraints have to
be typed is replaced by the weaker restriction that the set of semantic constraints
considered does not impose that any value of one of the columns k + 1, . . . , n of
r is equal to a value of one of the columns 1, . . . , k of r.

Additionally to the knowledge about semantic constraints an attacker might
also have some a priori knowledge about the world in general (e.g., a set of facts
and inference rules) which cannot be expressed as a set of formulas complying
with the restrictions stated above. But as shown in the introductory example
of Sect. 5, the inference-proofness of fragmentation cannot be guaranteed under
arbitrary a priori knowledge – even if no sensitive information can be inferred
solely based on this a priori knowledge. So, further research on (weak) syntactic
restrictions for modelling a priori knowledge without violating confidentiality
requirements might lead to even more expressive languages for that purpose.

As there are other approaches to achieving confidentiality by vertical frag-
mentation than the one treated in this article (see e.g. [2,9]), another idea for
future work might be to analyse the inference-proofness of these approaches. As
these approaches free the client from storing data locally by resorting to encryp-
tion if necessary, the logic-oriented modelling of an attacker’s knowledge has to
be adapted suitably to reflect these circumstances. Moreover, approaches based
on vertical fragmentation might be combined with approaches based on horizon-
tal fragmentation, which partition the set of tuples of an original instance r with
the help of selection criteria into several instances declared over the same set
of attributes as r. An approach to achieving inference-proofness based on hor-
izontal fragmentation is presented in [14]. This kind of “hybrid“ fragmentation
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promises a higher amount of outsourced data, but it raises several confidentiality
issues (like meta-inferences), which must be analysed with scrutiny.
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